Role of the IS50 R proteins in the promotion and control of Tn5 transposition.

نویسندگان

  • R C Johnson
  • W S Reznikoff
چکیده

IS50R, the inverted repeat sequence of Tn5 which is responsible for supplying functions that promote and control Tn5 transposition, encodes two polypeptides that differ at their N terminus. Frameshift, in-frame deletion, nonsense, and missense mutations within the N terminus of protein 1 (which is not present in protein 2) were isolated and characterized. The properties of these mutations demonstrate that protein 1 is absolutely required for Tn5 transposition. None of these mutations affected the inhibitory activity of IS50, confirming that protein 2 is sufficient to mediate inhibition of Tn5 transposition. The effects on transposition of increasing the amount of protein 2 (the inhibitor) relative to protein 1 (the transposase) were also analyzed. Relatively large amounts of protein 2 were required to see a significant decrease in the transposition frequency of an element. In addition, varying the co-ordinate synthesis of the IS50 R proteins over a 30-fold range had little effect on the transposition frequency. These studies suggest that neither the wild-type synthesis rate of protein 2 relative to protein 1 nor the amount of synthesis of both IS50 R proteins is the only factor responsible for controlling the transposition frequency of a wild-type Tn5 element in Escherichia coli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fis plays a role in Tn5 and IS50 transposition.

The Fis (factor for inversion stimulation) protein of Escherichia coli was found to influence the frequency of transposon Tn5 and insertion sequence IS50 transposition. Fis stimulated both Tn5 and IS50 transposition events and also inhibited IS50 transposition in Dam-bacteria. This influence was not due to regulation by Fis of the expression of the Tn5 transposition proteins. We localized, by D...

متن کامل

Integration host factor plays a role in IS50 and Tn5 transposition.

In Escherichia coli, the frequencies of IS50 and Tn5 transposition are greater in Dam- cells than in isogenic Dam+ cells. IS50 transposition is increased approximately 1,000-fold and Tn5 transposition frequencies are increased about 5- to 10-fold in the absence of Dam methylation. However, in cells that are deficient for both integration host factor (IHF) and Dam methylase, the transposition fr...

متن کامل

Excision and transposition of Tn5 as an SOS activity in Escherichia coli.

Excision and transposition of the Tn5 element in Escherichia coli ordinarily appear to occur by recA-independent mechanisms. However, recA(Prtc) genes, which encode RecA proteins that are constitutively activated to the protease state, greatly enhanced excision and transposition; both events appeared to occur concomitantly and without destruction of the donor DNA. The recombinase function of th...

متن کامل

Effect of dam methylation on Tn5 transposition.

The effect of dam methylation on Tn5 transposition was investigated by analyses of mutations in the host (Escherichia coli) and the element. Wild-type elements transposed at a higher frequency and showed higher levels of transposase expression in a dam-host. Mutations were made in the promoter region of the transcript that codes for the transposase. Transposition and transposase levels from the...

متن کامل

Induction of the SOS response in Escherichia coli inhibits Tn5 and IS50 transposition.

In response to DNA damage or the inhibition of normal DNA replication in Escherichia coli, a set of some 20 unlinked operons is induced through the RecA-mediated cleavage of the LexA repressor. We examined the effect of this SOS response on the transposition of Tn5 and determined that the frequency of transposition is reduced 5- to 10-fold in cells that constitutively express SOS functions, e.g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 177 4  شماره 

صفحات  -

تاریخ انتشار 1984